
Generalised

Asynchronous Arbiter

Stanislavs Golubcovs, Andrey Mokhov,

Alex Bystrov, Danil Sokolov, Alex Yakovlev

27 June 2019, Aachen



Generalised

Asynchronous Arbiter

Stanislavs Golubcovs, Andrey Mokhov,

Alex Bystrov, Danil Sokolov, Alex Yakovlev

27 June 2019, Aachen



Why a new

arbiter?



Why arbiters?

Arbiters orchestrate access to shared resources:

– Memory, where multiple processors meet

– Road intersections, where multiple cars meet

– Ice-cream shops, where multiple overheated people of Aachen meet



Why arbiters?

Arbiters orchestrate access to shared resources:

– Memory, where multiple processors meet

– Road intersections, where multiple cars meet

– Ice-cream shops, where multiple overheated people of Aachen meet

Good properties that we want from arbiters:

– Low latency: “I need an ice-cream as soon as possible, please!”



Why arbiters?

Arbiters orchestrate access to shared resources:

– Memory, where multiple processors meet

– Road intersections, where multiple cars meet

– Ice-cream shops, where multiple overheated people of Aachen meet

Good properties that we want from arbiters:

– Low latency: “I need an ice-cream as soon as possible, please!”

– Deadlock freedom: “What do you mean you run out of ice-cream?!”



Why arbiters?

Arbiters orchestrate access to shared resources:

– Memory, where multiple processors meet

– Road intersections, where multiple cars meet

– Ice-cream shops, where multiple overheated people of Aachen meet

Good properties that we want from arbiters:

– Low latency: “I need an ice-cream as soon as possible, please!”

– Deadlock freedom: “What do you mean you run out of ice-cream?!”

– Fairness: “Hey, that’s my ice-cream!”



Why arbiters?

Arbiters orchestrate access to shared resources:

– Memory, where multiple processors meet

– Road intersections, where multiple cars meet

– Ice-cream shops, where multiple overheated people of Aachen meet

Good properties that we want from arbiters:

– Low latency: “I need an ice-cream as soon as possible, please!”

– Deadlock freedom: “What do you mean you run out of ice-cream?!”

– Fairness: “Hey, that’s my ice-cream!”

– Constraints: “Can I have one pistachio and one non-vanilla scoop?”



Why a new arbiter?

Arbiters orchestrate access to shared resources:

– Memory, where multiple processors meet

– Road intersections, where multiple cars meet

– Ice-cream shops, where multiple overheated people of Aachen meet

Good properties that we want from arbiters:

– Low latency: asynchronous request capture, event-driven

– Deadlock freedom: formally verified using Petri nets

– Fairness:

– Constraints: 
generalised decision making by combinational logic



What’s the

main challenge?



What is the

main challenge?

What we want



What is the

main challenge?

What we wantWhat we have



What is the

main challenge?

What we wantWhat we have

Design, 

synthesis



What is the

main challenge?

What we wantWhat we have

Design, 

synthesis



What is the

main challenge?

What we wantWhat we have

Mutex gate



What is the

main challenge?

What we wantWhat we have

Mutex gate

Complex 

arbiter



Mutual exclusion (mutex) element

Standard implementation

Circuit and PN specification



The main idea



The main idea

What we want

Top-level structure



Initial state



Request 1 arrives, activates the Lock



Request 2 arrives, just in time to go through



Request 3 arrives too late



Make decision, grant request 2



Release the Lock, allowing Request 3 in



Request 2 is released, but too late



Grant controller decides there is nothing to do



Lock is released; falling Request 2 goes through



Request 1 is (finally) granted



The main idea

What we want

Top-level structure



Input channels

The request interface of the arbiter:

– Accepts arbitration request changes

– Activates the Lock controller to start the new arbitration round

– Provides the current request state to the Grant controller



Lock controller

Locks all input channels to create the locked request state

– Initialised by one (or more) input channels

– Activates grant controller when all request states are ready

– Unlocks all input channels when the grant controller has finished



Grant controller

Grant requests subject to constraints

– Initialised by one (or more) input channels

– Activated when the state of all requests is ready

– Unlocks all input channels once the decision has been made



Mutex elements

in action



Input Channel in Action (Case 1)

Initial state



Input Channel in Action (Case 1)

XOR element registers the change of input request



Input Channel in Action (Case 1)

Request change has won the arbitration



Input Channel in Action (Case 1)

Initialise the lock controller with init



Input Channel in Action (Case 1)

The second d-latch propagates request state



Input Channel in Action (Case 1)

MUTEX is now ready to accept lock signal, rstate is stable



Input Channel in Action (Case 1)

MUTEX accepts lock, initialises ready to compute



Input Channel in Action (Case 2)

Some other channel has initialised the arbitration



Input Channel in Action (Case 2)

Any req changes will not affect rstate until the end of computation 



Design issues



Verification flow



Scaling the Lock Controller

Timing assumption: all OR-gates should settle faster than 
the delay of the C-element tree and the grant controller



Performance

Design scales linearly with the increased number of input channels

Latency scales logarithmically, because of the tree structures



Example: 1-of-3 Arbiter

Arbitration: 1 resource is shared among 3 users.



Example: 2-of-3 Arbiter

Arbitration: 2 resources are shared among 3 users.



Example: Nacking Arbiter

Nacking actively acknowledges that the resource is occupied, the user can 
attempt to take some other action rather than waiting for grant



Main results

Generalised asynchronous arbiter:

– Low latency, deadlock-free, arbitrary decision logic

– Clean top-level decomposition: Input Channels, Lock and Grant

– Same general structure can be used to design different arbiters

– Grant controller can be synthesised automatically

Problem solved?

– In practical terms, the answer is “Probably Yes”

– If you are a theoretician then the answer is “No”: still no synthesis!


